1264

Table 2 ¹³C NMR data of compounds 1 and 2 (CDCl₃, 100 6 MHz)

С	1	2	С	1	2
1	32 3	31 1	12	25 8	26.5
2	47 2	509	13	24 2	24 2
3	25 2	26 3	14	1554	158 7
4	36 2	36 3	15	149	161
5	53 1	520	1′	97 2	97 2
6	104 1	101 4	2'	73 9	73 8
7	71 1	70 9	3′	72 1	720
8	27 5	30 5	4'	71.6	716
9	344	33 4	5′	70 2	70.1
10	35 1	39 8	6′	16 5	166
11	79 2	78 2			

(Table 2) also supported the proposed structure. The glycosides 1 and 2 are most probably formed by an allylic oxidation of hinesol β -fucopyranoside [2] The isolation of a fucopyranoside of a sesquiterpene alcohol may be of chemotaxonomic relevance as already these compounds have been detected in four different species

EXPERIMENTAL

¹H NMR, 400 MHz, TMS as internal standard, MS 70 eV The air-dried aerial parts (950 g), collected near Alexandria, Egypt, were extracted with 95% EtOH at room temp The resulting extract was separated by CC (silica gel) and further by

repeated TLC (silica gel GF 254) Known compounds were identified by comparison of mp, IR, and ¹H NMR spectra with those of authentic materials Finally, 80 mg taraxasterol, 60 mg stigmasterol, 170 mg β -sitosterol β -D-glycoside, and 100 mg of a mixture of 1 and 2 were obtained HPLC of 30 mg of the mixture (RP 8, MeOH-H₂O, 7 3) afforded 15 mg 1 (R_1 9 9 min) and 15 mg 2 (R_1 12 3 min). Acetylation of 1 and 2 using Ac₂O and dimethyl aminopyridine at 20° for 1 hr gave the tetraacetates 3 and 4 Compound 1 and its 7α -epimer 2, colourless gum, IR $\nu_{\rm max}^{\rm nujol}$ cm⁻¹ 3400–3600 (OH), MS m/z (rel int) 384 [M]⁺ (0 1) ($C_{21}H_{36}O_6$), 366 [M-H₂O]⁺ (0 25), 308 [$C_{18}H_{28}O_4$]⁺ (1 6), 220 [$C_{15}H_{24}O$]⁺ (25), 203 [$C_{15}H_{23}$]⁺ (86), 147 (54), 75 (100)

Acknowledgement—We thank Professor Boulos (Department of Botany, University of Cairo) for identification of the plant material

REFERENCES

- 1. Bohlmann, F, Burkhardt, T and Zdero, C (1973) Naturally Occuring Acetylenes, p. 459 Academic Press, London
- Rustaiyan, A., Behjati, B. and Bohlmann, F. (1976) Chem. Ber. 109, 3913
- 3 Rustaiyan, A, Dabin, M, Gupta, R K and Bohlmann, F (1981) Phytochemistry 20, 1429
- 4 San Feliciano, A, Barrero, A F, Del Corral, I M M, Gacimartin, M V and Medarde, M (1982) Phytochemistry 21, 2115
- 5 Wagner, H (1977) in The Biology and Chemistry of the Compositae (Heywood, V H, Harborne, J B and Turner, B C, eds), p 1017. Academic Press, London

Phytochemistry, Vol. 28, No. 4, pp. 1264–1267, 1989 Printed in Great Britain

0031 9422/89 \$3 00 + 0 00 Pergamon Press plc

SESQUITERPENE LACTONES AND AN ELEMANE DERIVATIVE FROM ONOPORDON CORYMBOSUM

Ma Luz Cardona, Begoña Garcia, Jose R Pedro* and Jorge F Sinisterra

Department of Organic Chemistry, Faculty of Chemistry, University of Valencia, Burjassot, Valencia Spain

(Received in revised form 29 September 1988)

Key Word Index - Onopordon corymbosum, Compositae, sesquiterpene lactones, elemanolides, ¹³C NMR

Abstract—The aerial parts of *Onopordon corymbosum* afforded dehydromelitensin, its 8-(4-hydroxymethacryloil)-derivative and a related ester. The ¹³C NMR of several natural and synthetic elemanolides are discussed

INTRODUCTION

From the genus Onopordon (Compositae, tribe Cynareae) several species have been investigated chemically Flav-

*Author to whom correspondence should be addressed

onoids [1] and sesquiterpene lactones [2] are the most characteristic isolated constituents. In the present paper we report the isolation and structure elucidation of two elemanolides and an elemane derivative from the hitherto unstudied *Onopordon corymbosum* Willk. The ¹³C NMR spectral data for several natural and synthetic elemanolides are given also

Short Reports 1265

1 R = H
2 R =
$$COC(\longrightarrow CH_2)CH_2OH$$

OH

4
$$R^1 = CH_2OH$$
, $R^2 = H$
5 $R^1 = CH_2OAc$, $R^2 = Ac$
6 $R^1 = Me$, $R^2 = H$
7 $R^1 = Me$, $R^2 = S_1(Me)$, R_1

7
$$R^1 = Me$$
, $R^2 = S_1(Me)_2Bu^T$
8 $R^1 = CHO$, $R^2 = S_1(Me)_2Bu^T$

(which belong to the same family and tribe as *Onopordon*). The compound 2 has been isolated previously from O.

RESULTS AND DISCUSSION

The polar fractions of the methanolic extract of the aerial parts of *O. corymbosum* gave a complex mixture of sesquiterpenes which could be separated by repeated column chromatography Dehydromelitensin (1), the corresponding 4-hydroxymethacrylate (2) and the elemane derivative (3) were isolated. The structures of these compounds could be deduced from the ¹H and ¹³C NMR spectra The ¹H NMR spectral data of compound 1 are included (Table 1) because a high-field spectrum has not been reported previously.

The 13 C NMR spectrum of 1 and 2 were very characteristic of elemanolides (Table 2) The C-1, C-2 and C-3 carbons gave signals at ca δ 146, 113, 115 and 143 respectively. The lactonic carbonyl appeared at ca δ 170, the exocyclic methylene at 137 (C-11) and at 120 (C-13) The carbon bonded at oxygenated functions appeared between δ 65 and 80: C-15 at 67, C-8 at 67–69 depending on the substituents and C-6 at 78 The ester side chain of 2 gave signals at δ 126 for the olefinic carbon (C-18) and δ 62 for the carbon bonded to hydroxyl group (C-19).

In the 13 C NMR spectrum of 3 there is also evidence for the presence of the elemane skeleton (δ 146, 112, 115 and 139 for the carbons C-1, C-2, C-3 and C-4 respectively), as well as the two ester carbonyl (at δ 167 and 165), the methoxyl (at δ 52) and the nature of the ester side chain (δ 126 and 62 for C-18 and C-19 respectively) The compound 3 has been isolated previously once only from Onopordon carmanicum [3] and it has been named elemacarmanin The two other elemanolides isolated from O. corymbosum are characteristic for this genus also Thus, compound 1 has been isolated previously from O nervosum [4] as well as from four Centaurea species [5-8]

leptolepis [9], O nervosum [4] and C. tagananensis [8] The 13CNMR spectra of several elemanolides synthesised by us [10] are also included in Table 2. These data could be of great value for identification of natural elemanolides, because several generalizations have been established The chemical shift for C-1, C-2, C-3 and C-4 carbons are very characteristic δ 146–147 and 112–113 for C-1 and C-2 respectively, when the substituent at C-8 is α , while in the epitemisine 9 (OH at C-8 is β) these carbons gave signals at δ 148 and 115 The value of C-4 is very characteristic also and depends on the nature of the substituent at this carbon. 139 ppm when this substituent 18 CH₂OAc, 140 when it 18 Me, 144 when it 18 CH₂OH and 145 when it is CHO Likewise C-3 gave a characteristic signal at δ 115–116, unless the C-4 substituent is the formyl group, which causes a low-field shift of ca 20 ppm. The value of this signal is affected by the stereochemistry of C-8 again (δ 121.5 for the epitemisin 9). The C-6 and C-8 carbons gave characteristic signals also at $ca \delta 78$ and 68respectively, a β -substituent at C-8 reduces these values at δ 76 and 65, as in compound 9. The C-9 carbon gave a signal at ca 49.5 when at C-8 there is a α -hydroxyl free or as a silyl ether, whilst this signal appeared at ca 45 when this hydroxyl is acylated, or at ca 46 when it is β -oriented. The quaternary C-10 carbon gave a characteristic signal at $ca \delta 42$ and the methyl group bonded at C-10 (C-14) gave a signal at $ca \delta 19$, except when the substituent at C-8 is β , in which case this signal appeared at $ca \delta 21$. The C-11. C-12 and C-13 carbons gave characteristic signals also. In α,β -unsaturated lactones the C-12 carbon (C=O) gave a signal at $ca \delta 170$ whilst saturated lactones gave a signal at $ca \delta 178$. The C-11 and C-13 carbons gave signals

1266 Short Reports

at ca δ 137 and 120 respectively if the lactone is α,β -unsaturated and δ 41 and 14 if it is saturated, unless the substituent at C-8 is β again (ca δ 37 and 12 respectively in

Table 1 ¹H NMR spectral data of compound 1

Н	δ	
		_
1	5 76 dd	
2	5 02 d	
2'	4 96 d	
3	5 38 s	
3′	4 92 5	
5	2 49 d	
6	4 12 t	
7	2 62 tt	
8	4 09 dt	
9β	1 85 dd	
13	6 15 d	
13'	5 96 d	
14	1 08 s	
15	4 06 d	
15'	3 96 d	

Coupling constants (Hz) $J_{1\,2} = 10\,7$, $J_{1\,2}$, = 17 3, $J_{5\,6} = J_{6\,7} = 11\,5$, $J_{7\,13} = J_{7\,13}$, = 3, $J_{7\,8} = J_{8\,9\beta} = 4\,1$, $J_{9\alpha\,9\beta} = 13\,0$, $J_{1\,5\,15} = 14\,0$

compound 9). Finally the C-15 carbon gave a characteristic signal also A methyl group gave a signal at δ 23 5, when it is bonded to a hydroxyl group free or acetylated gave a signal at $ca \delta$ 67 and when it is a formyl group gave a signal at $ca \delta$ 194 The assignment of carbon signals has been made according to the results obtained by distortionless enhancement by polarization transfer (DEPT) experiments. Only the signals corresponding to the C-5 and C-7 carbons could not be assigned without ambiguity. Nevertheless, it is clear that the generalizations established from ^{13}C NMR spectral data of Table 2 could be of great value for identification of natural elemanolides

EXPERIMENTAL

 1 H and 13 C NMR were run at 200 13 and 50 32 MHz respectively in Cl₃CD, using the solvent signals at δ 7 24 (1 H) and δ 77 0 (13 C) as ref. The DEPT experiments were performed using polarization transfer pulses of 25° and 17°, obtaining in the first case positive signals for CH and CH₃ and negative signals for CH₂, in the second case only signals for the CH groups

Plant material Aerial parts of O corymbosum were collected at the Valencia-Teruel road (Barracas, Castellón, Spain) and authenticated by Prof J Alcover (Botany Department of the Faculty of Biological Sciences, University of Valencia) A voucher specimen is deposited in the herbarium of the above mentioned department

Extraction and chromatography The plant material (12 kg) was extracted exhaustively firstly with hexane and afterwards with MeOH This extract was reduced in vacuo to ca 1 5 l, diluted with H₂O (3 l) and re-extracted with Et₂O Evaporation of

Table 2 13C NMR spectral data of compounds 1-9

C	1	2	3	4	5	6	7	8	9
1	146 11	145 59	146 31	146 36	145 70	146 94	147 17	146 00	148 14
2	112 69	113 15	112 03	112 56	113 09	111 86	111 59	112 31	115 60
3	114 90	115 20	114 95	114 59	116 67	115 75	115 44	137 72	121 52
4	143 92	143 65	139 33	144 42	138 87	140 26	140 36	145 33	140 70
5	50 61ª	50 58ª	55 37ª	50 49a	51 33a	58 26a	58 29a	46 59a	59 75ª
6	78 82	78 64	70 92*	78 70	77.99	78.56	78.56	77.37	75.88
7	55 04ª	52 34a	54 66ª	58 43a	55 98ª	55 19ª	55 21ª	58 56ª	56 64ª
8	67 47	69 67	70 92*	68 93	69.91	69 13	69 54	69 51	65 47
9	49 77	45 04	43 53	49 55	44 99	49 56	49 72	49 39	46 12
10	41 92	41 92	40 24	41 71	41 63	42 03	41 80	41 71	42 69
11	137 44	136 63	137 97	41 57	41 02	41 46	41 23	41 36	36 94
12	169 68	9	167 13 ^b .	178 44	177 69	178 72	178 85	178 56	178 92
13	120 49	120 22	128 35	14 36	13 90	14 41	14 40	14 45	12 32
14	18 88	18 68	18 36	18 99	18 88	19 71	19 53	18 32	21 19
15	67 31	67 36	67 84	67 35	67 25	23 79	23 65	193 73	23 52
16.		7	165-42 ^b		_				
17		?	2	_				-	
18		126.74	126.01	_			-	-	
19		62 32	62 47				-		
OMe.	¬		52 03-			_			

Other signals: compound 5 170 55, 170 24 for -OCOMe and 21 01 for -OCOMe Compound 7, 25 69 for $(Me)_3$ C-Si 17 84 for $(Me)_3$ C-Si and -4 42 and -4 71 for Me -Si Compound 8, 25 72 for $(Me)_3$ C-Si. 17 90 for $(Me)_3$ C-Si and -4 36 and -4 66 for Me -Si

^{*}Overlapped signals

^{a b}Chemical shifts denoted by the same letter in each column may be interchanged

solvent yielded 70 g of crude syrup which was chromatographed, on silica gel Elution of the column with mixtures of increasing polarity (hexane-CH₂Cl₂-EtOAc) and repeated CC of the fractions eluted from CH₂Cl₂-EtOAc (3 17) to EtOAc afforded 1 (7 mg), 2 (3 mg) and 3 (25 mg)

Dehydromelitensin (1). Colourless oil; IR ν_{max} cm⁻¹. 3600–3100, 1760, 1640 MS m/z (rel. int.) 249 [M-15]⁺ (0.42), 246 [M-18]⁺ (0.94), 231 (1.65).

8-(4-hydroxymethacryloil)-Dehydromelitensin (2) Colourless oil IR $\nu_{\rm max}$ cm⁻¹ 3600–3150, 1770, 1730 MS m/z (rel int.) 246 [M – RCO₂H]⁺ (6.1), 85 (RCO)⁺ (60).

Elemacarmanın (3) Colourless oil, IR v_{max} cm⁻¹ 3550–3150, 1715, 1630 MS m/z (rel int) 278 [M-RCO₂H]⁺ (49), 85 [RCO]⁺ (57)

Acknowledgements—Financial support by the Comisión Asesora de Investigación Cintífica y Técnica (CAICYT, Grant No 559/84) is gratefully acknowledged We thank Prof Dr J Alcover (Department of Botany, Faculty of Biological Sciences, University of Valencia, Spain) for identification of plant material.

REFERENCES

- Karl, C., Muller, G. and Pedersen, P A (1976) Dtsch. Apoth Ztg. 116, 57.
- 2 Fischer, N H, Oliver, E J. and Fischer, H D (1979) Fortschr Chem. Org. Naturst 38, 47
- 3 Rustaiyan, A, Ahmadi, B, Jakupovic, J and Bohlmann, F. (1986) *Phytochemistry* 25, 1659
- 4 Gonzalez, I, Macías, F A, Massanet, G M., Oliva, J M, Rodriguez, F and Vergara, C (1984) An Quim 80C, 100.
- Gonzalez, A G, Bermejo, J, Cabrera, I and Massanet, G. M (1974) An Quim 70, 74
- Gonzalez, A G, Bermejo, J and Zaragoza, T (1980) An Quim 76, 296
- 7 Picher, M T, Seoane, E and Tortajada, A. (1984) Phytochemistry 23, 1995
- 8 Gonzalez, A. G, Bermejo, J, Zaragozá, T and Estevez, F. (1984) Phytochemistry 23, 2071
- 9 Rustaiyan, A., Nazarians, L. and Bohlmann, F (1979) Phytochemistry 18, 879
- Arnó, M, Garcia, B, Pedro, J R and Seoane, E (1984) Tetrahedron 40, 5243

Phytochemistry, Vol. 28, No. 4, pp. 1267–1268, 1989 Printed in Great Britain 0031-9422/89 \$3 00+0 00 © 1989 Pergamon Press plc

A DERIVATIVE OF ENT-13-EPI-MANOYL OXIDE ISOLATED FROM SIDERITIS JAVALAMBRENSIS

M. J. ALCARAZ, S. GARCIA-OCHOA,* M. J. JIMENEZ, S. VALVERDE* and A. VILLAR†

Departamento de Farmacología y Farmacotecnia, Facultad de Farmacia, Avd. Blasco Ibáñez, 13, 46010 Valencia, Spain; *Instituto de Química Orgánica, Juan de la Cierva, Madrid, Spain; †Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain

(Received 5 July 1988)

Key Word Index—Sideritis javalambrensis; Labiatae, diterpenoid; ent-13-epi-manoyl oxide derivative; ent-16-hydroxy-13-epi-manoyl oxide.

Abstract—ent-16-Hydroxy-13-epi-manoyl oxide, a new derivative of ent-13-epi-manoyl oxide, has been isolated from the hexanic extract of Sideritis javalambrensis aerial parts.

INTRODUCTION

Sideritis javalambrensis Pau is a plant endemic to Sierra Javalambre (Teruel, Spain) whose chemical content has not been previously studied. The hexanic extract obtained from the aerial parts of this species exerts anti-inflammatory effects in animals [1] In the present work, it has been studied to establish the principle responsible for the pharmacological activity thus leading to the isolation of a new diterpenoid

The diterpenoid was found to have the molecular formula $C_{20}H_{34}O_2$. The ¹H NMR spectrum showed an AB quartet centred at $\delta 3.05$ (J=10.8 Hz) assigned to two protons geminal to a primary hydroxyl group, as well as a vinylic ABX system and four methyl singlet signals at 0.79 (6H), 0.71 (3H) and 0.66 (3H) The ¹³C NMR data of C-1 to C-11 and C-17 to C-20 were identical to those of ent-

13-epi-manoyl oxide [2] whereas the carbon resonances of C-12 to C-16 led us to place the hydroxyl function at C-16.